Abstract
In this paper, a high step-up quasi- Z Source (QZS) dc–dc converter is proposed. This converter uses a hybrid switched-capacitors switched-inductor method in order to achieve high voltage gains. The proposed converter have resolved the voltage gain limitation of the basic QZS dc–dc converter while keeping its main advantages, such as continuous input current and low voltage stress on capacitors. Compared to the basic converter, the duty cycle is not limited, and the voltage stress on the diodes and switch is not increased. In addition to these features, the proposed converter has a flexible structure, and extra stages could be added to it in order to achieve even higher voltage gains without increasing the voltage stress on devices or limiting the duty cycle. The operation principle of the converter and related relationships and waveforms are presented in the paper. Also, a comprehensive comparison between the proposed and other QZS based dc–dc converters is provided which confirms the superiority of the proposed converter. Simulations are done in power systems computer aided design (PSCAD) in order to investigate the maximum power point tracking (MPPT) capability of the converter. In addition, the valid performance and practicality of the converter are studied through the results obtained from the laboratory built prototype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.