Abstract

A soft-switching bidirectional dc–dc converter (BDC) with a coupled-inductor and a voltage doubler cell is proposed for high step-up/step-down voltage conversion applications. A dual-active half-bridge (DAHB) converter is integrated into a conventional buck-boost BDC to extend the voltage gain dramatically and decrease switch voltage stresses effectively. The coupled inductor operates not only as a filter inductor of the buck-boost BDC, but also as a transformer of the DAHB converter. The input voltage of the DAHB converter is shared with the output of the buck-boost BDC. So, PWM control can be adopted to the buck-boost BDC to ensure that the voltage on the two sides of the DAHB converter is always matched. As a result, the circulating current and conduction losses can be lowered to improve efficiency. Phase-shift control is adopted to the DAHB converter to regulate the power flows of the proposed BDC. Moreover, zero-voltage switching (ZVS) is achieved for all the active switches to reduce the switching losses. The operational principles and characteristics of the proposed BDC are presented in detail. The analysis and performance have been fully validated experimentally on a 40–60 V/400 V 1-kW hardware prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call