Abstract

Cells of the green alga Chlorella kessleri Fott et Nováková use a reductive mechanism for iron acquisition. Iron-limited cells acquired iron more rapidly from a chelator with a lower stability constant for Fe3+ (hydroxyethylethylenediaminetriacetic acid (HEDTA)) than from a chelator with a higher stability constant (N,N′-di[2-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED)). Furthermore, iron uptake rates decreased with increasing chelator concentrations at constant iron concentration. The negative effects of elevated HBED levels on iron uptake could be partly alleviated by the addition of Ga3+, which suggests that iron-free chelator has a negative effect on iron acquisition by competing for Fe2+ with the ferrous transport system. Furthermore, ferric reductase activity progressively decreased with increasing concentrations of both chelators (in the iron-free form). This effect was not alleviated by Ga3+ addition and was apparently caused by the direct inhibition of the reductase. Overall, we conclude that chelators with high stability constants for Fe3+ decrease iron acquisition rates by Strategy I organisms via three separate mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.