Abstract

We present the results of a perpendicular magnetic tunnel junction (MTJ) that displays simultaneously low critical switching current and voltage, as well as high thermal stability factor. These results were achieved using a free layer of the MgO/CoFeB/MgO structure by increasing the spin torque efficiency to an average of 3.0 kBT/µA for 37-nm-diameter junctions, about three times that of a MgO/CoFeB/Ta free layer, which makes it the highest value reported to date. By comparing two films with different RA, hence different switching voltage and power, we explore the contributions of heating and voltage-modulated anisotropy change to the switching properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.