Abstract

High spin structure of Zr isotopes, in particular, around [Formula: see text] has been studied in yrast and nonyrast regions. Spin dependence of shapes for the yrast levels are investigated by employing Cranked Hartree–Fock–Bogoliubov (CHFB) theory using a [Formula: see text] model interaction and the calculations are in good accord with the experimental data. The nonyrast states are treated by incorporating temperature degree of freedom using the statistical theory (ST). Highly deformed prolate shapes dominate the nonrotating proton rich region at low temperatures (T) with coexisting oblate and prolate shapes in [Formula: see text]Zr. Hot rotating nuclei show highest deformation around [Formula: see text] among all the other Zr isotopes even at high temperatures. [Formula: see text]Zr exhibits interesting structural transitions, hence studied in detail in yrast and non yrast regions. Triaxiality predominates in both yrast and nearly yrast (low temperature) regions at low spins with transition to elongated shapes at mid spin values 30–38[Formula: see text] to highly deformed oblate shapes at higher spins. CHFB predicts a strong backbending effect at 32[Formula: see text] and 40[Formula: see text]. A shape coexistence between the rare shape phase of noncollective prolate and oblate is reported in [Formula: see text]Zr at low temperature and [Formula: see text]. Prolate shape phase disappears with increasing temperature and spin but the nucleus remains highly deformed (with [Formula: see text] at spin [Formula: see text]40[Formula: see text]) even at high temperatures of the order of 3–3.5[Formula: see text]MeV, hence a very promising candidate for GDR probes of nuclear shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call