Abstract

A new series of Fe(II) complexes, FeCl2[N(R)=C(Me)C(Me)=N(R)], containing diimine ligands with hemilabile sidearms R (R = CH2(CH2)2NMe2, 1, CH2(CH2)2OMe, 2, CH2(CH2)2SMe), 3) were synthesized. The crystal structure of 1 showed 6-coordination where both amine arms were attached, whereas 2 was a 5-coordinate 16e species with one methoxy arm dangling free. Extensive attempts were made to bind CO to these species to synthesize precursors for dihydrogen complexes but were unsuccessful. Reaction of 1 with 1 or 2 equiv of AgOTf under CO atmosphere resulted in isolation of only a 6-coordinate bis(triflate)-containing product [Fe[N(R)=C(Me)C(Me)=N(R)](OTf)2] (R = CH2(CH2)2NMe2), 5. Reaction of 5-coordinate 2 with AgSbF6 under CO did not give a CO adduct but afforded instead a dicationic dinuclear complex [Fe[N(R)=C(Me)C(Me)=N(R)](mu-Cl)]2[SbF6]2 (R = CH2(CH2)2OMe), 4, containing a weakly bound SbF6. Thus coordination of hard-donor anions to iron was favored over CO binding. The unexpected rejection of binding of CO is rationalized by the iron being in a high-spin state in this system and energetically incapable of spin crossover to a low-spin state. Theoretical calculations on CO interaction with Fe(II) centers in spin states S = 0, 1, and 2 for both the 16e complexes and their CO adducts aid further understanding of this problem. They show that interaction of CO with a high-spin 5-coordinate Fe model diimine complex is essentially thermoneutral but is exergonic by about 48 kcal/mol to a comparable but low-spin diphosphine fragment. Spin crossover is thus disfavored thermodynamically rather than kinetically (e.g. a "spin block" effect); i.e., the ligand field strengths of the primarily N-donor groups are apparently insufficient to give a low-spin CO adduct.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.