Abstract

Two-dimensional (2D) van der Waals (vdWs) heterojunctions have been actively investigated in low-power-consumption and fast-response photodiodes owing to their atomically smooth interfaces and ultrafast interfacial charge transfer. However, achieving ultralow dark current and ultrafast photoresponse in the reported photovoltaic devices remains a challenge as the large built-in electric field in a heterojunction can not only speed up photocarrier transport but also increase the minority-carrier dark current. Here, we propose a high-spike barrier photodiode that can achieve both an ultralow dark current and an ultrafast response. The device is fabricated by the Te/WS2 heterojunction, while the band alignment can transition from type-II to type-I with a high electron barrier and a large hole built-in electronic field. The high electron barrier can greatly reduce the drift current of minority carriers and the generation current of the thermal carriers, while the large built-in electronic field can still speed up the photocarrier transport. The designed Te/WS2 vdWs photodiode yields an ultralow dark current of 8 × 10-14 A and an ultrafast photoresponse of 10/13 μs. Furthermore, a high-performance visible-light imager with a pixel resolution of 100 × 40 is demonstrated using the Te/WS2 vdWs photodiode. This work provides a comprehensive understanding of designing 2D-material-based photovoltaics with excellent overall performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.