Abstract

Mid-infrared photothermal (MIP) microscopy overcomes the resolution and huge water background limits in conventional mid-infrared imaging by probing the mid-infrared absorption induced photothermal effect. However, to detect the subtle MIP signal, large probe power and lock-in detection are needed, which limit the imaging speed of current MIP systems. To overcome this limitation, we develop a single-pixel pump-probe camera that leverages the large well-depth capacity of photodiode to achieve high-speed wide-field MIP imaging. With compressive sensing applied, close to video-rate MIP imaging can be achieved, offering a powerful label-free chemical imaging tool to scrutinize the complex biological systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call