Abstract
A 20 cm focal length normal incidence vacuum ultraviolet (VUV_20 cm) monochromator with a fast time response has been developed for measuring edge impurity line emission in the wavelength range of 300–2000 Å on an HL-2A tokamak. An aberration corrected concave holographic grating with 1200 grooves/mm is adopted in the monochromator, which provides a wavelength dispersion of 40 Å mm−1. The aperture is f/4.5. A channel electron multiplier is used as a detector. The time resolution of the system is 17 μs. Wavelength calibration of the system has been done by using a hollow cathode light source in the laboratory with helium and argon gases. The obtained signals of helium and argon spectra are very strong since the inner surface of the monochromator vacuum chamber is blackened and the stray light level is then significantly reduced. The optical property of the system has been examined by scanning the width of the entrance and exit slits. The system is then installed at the mid-port of the HL-2A tokamak and typical line emissions from the HL-2A plasma are measured. Time behaviors of edge impurity line emissions are observed with the fast time response system in different plasma confinement regimes, especially in the H-mode discharges. The result shows that the VUV_20 cm system works very well to measure the edge impurity line emissions in the edge localized modes phase of H-mode discharges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.