Abstract

Surgical margin analysis (SMA), an essential procedure to confirm the complete excision of cancerous tissue in tumor resection surgery, requires intraoperative diagnostic tools to avoid repeated surgeries due to a positive surgical margin. Recently, by taking the advantage of the high intrinsic optical absorption of DNA/RNA at 266 nm wavelength, ultraviolet photoacoustic microscopy (UV-PAM) has been developed to provide high-resolution histological images without labeling, showing great promise as an intraoperative tool for SMA. To enable the development of UV-PAM for SMA, here, a high-speed and open-top UV-PAM system is presented, which can be operated similarly to conventional optical microscopies. The UV-PAM system provides a high lateral resolution of 1.2 µm, and a high imaging speed of 55 kHz A-line rate with one-axis galvanometer mirror scanning. Moreover, to ensure UV-PAM images can be easily interpreted by pathologists without additional training, the original grayscale UV-PAM images are virtually stained by a deep-learning algorithm to mimic the standard hematoxylin- and eosin-stained images, enabling training-free histological analysis. Mouse brain slice imaging is performed to demonstrate the high performance of the open-top UV-PAM system, illustrating its great potential for SMA applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call