Abstract
High Speed Trains (HST) face some of the most stringent requirements for ensuring passenger safety and comfort while operating at very high velocities. HST wireless communication systems therefore similarly require special considerations for network design, technology selection and system implementation. For infrastructure-based wireless communications, a handover occurs whenever a radio transitions from the coverage of the current base station to the next base station. The faster the train moves the shorter the time that it spends under coverage area before a handover is required. For HST this can be as short as 10–20 seconds. Furthermore, a HST moving at 220 mph experiences significant fast and small-scale wireless signal fading due to this velocity, but similarly may incur frequent connectivity losses due to the rapid transit across coverage areas. A route consisting of viaducts, bridges, tunnels or hilly regions drastically increases the need for rapid handovers since a large number of base stations are required to provide coverage and achieve acceptable Quality-of-Service (QoS) in such environments. Due to the relatively fixed amount of time needed to complete a handover, and the possibility of failed handovers, this reduces the usable time under coverage, and thus ensuring an optimal handover strategy selection is vital. Most of the routes span rural and suburban areas, which reinforces the need for a comprehensive network planning strategy, as these areas tend to be underdeveloped for cellular coverage. Given the complexity in available radio spectrum resources, detailed studies are required to aid in this technology selection process. However, with the predicted increase in the demand of railroad network data traffic generated by onboard sensors, onboard control and operation devices, passenger Internet services, etc., it becomes apparent that more resources are needed than are provided by current technologies such as LTE. Thus, including 5G New Radio for Railways (5G-NR2) in the consideration does not only provide railways a more cost-effective licensing option for frequencies, but also an opportunity to select the best possible radio access method for a given HST corridor. In this paper, we focus on the metrics related to handover and how they correlate with different radio access technologies for HST. Our results integrate the uncertainty of environmental factors to provide answers on technology selection driven by specific route, inter-site distances, and available bandwidth. Our wireless communication simulation results are driven by well recognized mathematical models that consider a variety of key parameters. The analysis of the handover performance will offer insights vital to future railroad network planning for multivariate radio access technologies, and to answer crucial questions about the potential for using frequency bands above 6 GHz in HST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.