Abstract
Mechanical behavior of high speed trains bogie seriously impact the reliability of the train system. Performance monitoring and fault diagnosis for the critical component on bogie are very important. Simulation data of high speed train bogie fault signal is selected in data experiment. Based on multiresolution analysis, wavelet entropy features are extracted to reflect the uncertainty level of the vibration signal on scales. In the high dimension space composed by several wavelet entropy features, the dates from four fault patterns are classified and the result is satisfactory. Result show that wavelet entropy feature is effective for fault signal analysis of high speed train bogie.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.