Abstract

Temporal and spatial shaping of laser beams is common in laser micromachining applications to improve quality and throughput. However, dynamic beam shaping (DBS) of ultrashort, high-power pulses at rates of hundreds of kHz has been challenging. Achieving this allows for full synchronization of the beam shape with high repetition rates, high-power lasers with zero delay time. Such speeds must manipulate the beam shape at a rate that matches the nanosecond to microsecond process dynamics present in laser ablation. In this work, we present a novel design capable of alternating spatial and temporal beam shapes at repetition rates up to 330 kHz for conventional spatial profiles and temporal shaping at nanosecond timescales. Our method utilizes a unique multi-aperture diffractive optical element combined with two acousto-optical deflectors. These high damage threshold elements allow the proposed method to be easily adapted for high power ultrashort lasers at various wavelengths. Moreover, due to the combination of the elements mentioned, no realignment or mechanical movements are required, allowing for high consistency of quality for high throughput applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.