Abstract

A time efficient technique for real-time tracking of high-speed objects in a video sequence is presented in this article. The technique is primarily based on the segmentation of the optical flow field computed between the successive image frames of a video sequence, followed by the tracking of a detected point of interest (POI) within the segmented flow field. In the initial phase of the technique, the optical flow field between the first two successive image frames acquired from a video sequence, is computed. A fuzzy hostility index indicative of the degree of coherence of the moving objects in the image frames, is used to segment the optical flow field. This yields different coherent regions of interest (ROIs) in the segmented flow field. A POI is then detected in the different ROIs obtained. Tracking of the moving object is then carried out by computing the flow fields between predefined ROIs in the neighborhood of the detected POI in the subsequent image frames. Since the selected ROIs are smaller than the image frames, a fair amount of reduction in the time required for the computation of the optical flow field is achieved, thereby facilitating real-time operation. An application of the proposed technique is demonstrated on three video sequences of high-speed flying fighter aircrafts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.