Abstract

Rice-ear-shaped Cu dendritic particles were fabricated via fast galvanic displacement reactions for 3–5 min under ambient conditions by adding Zn particles into an aqueous electrolyte without chloride ions. The obtained Cu dendritic particles have a small average size (4.44 μm) and short, multiple branches that seemed to be aggregates of nanoparticles formed on stem-like backbones, and their surface area is large. The prepared Cu dendrites could be protected against oxidation during drying via post-treatment with chelating or complexing agents. While the dendrite stem is found to be a Cu polycrystal grown only on the (111) plane, the branches consist of three planes of Cu, viz., (111), (200), and (220), indicating that they were formed by random attachment of nanoparticles and aggregates. A possible low-temperature and high-speed synthesis mechanism is proposed based on the results of time-dependent SEM investigations as well as the crystal structure of the dendrites. This novel technique to synthesize modified dendrites is extremely simple and suitable for mass production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.