Abstract
We integrated the high-speed synchrotron X-ray phase-contrast imaging (PCI) with a modified Kolsky compression bar loading platform to visualize the dynamic failure processes of cross-ply glass fiber reinforced composites (GFRCs). Four S-2 glass/SC-15 composite specimens were prepared, having similar thicknesses but different stacking sequences, namely as [012/9012], [9012/012], [08/908/08], and [908/08/908]. Three-dimensional synchrotron X-ray computed tomography and scanning electron microscopy (SEM) were employed to examine the microstructures and quantify the fiber volume fractions. Each specimen was notched and subjected to a dynamic three-point flexural loading. The onset of cracking close to the notch tip, crack propagation in 0° or 90° plies and their interface, crack opening, and ultimately failure of the specimen were captured by high-speed synchrotron X-ray PCI. Additional dynamic experiments were performed to determine the average time when the stress wave propagated through the specimen and correlate the X-ray images with the specimen's force-deflection response. Finally, the surface morphology of each specimen after the dynamic loading was imaged by SEM. Comparison between real-time X-ray images and post-fracture SEM images demonstrated the capability of the X-ray method to record damage evolution inside composites. Furthermore, the high spatial and temporal resolutions of the X-ray setup and edge enhancement by PCI enabled the identification of microscale damage features within 1 μs. Two damaging processes were identified, crack growth was quantified, and fracture toughness of the composites was evaluated. The method is deemed useful to reveal microscale damage mechanisms and track cracking behaviors inside cross-ply GFRCs under dynamic loading in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.