Abstract

Count rate (CR) is one of the key parameters of superconducting nanowire single-photon detectors (SNSPDs). The practical SNSPDs usually have a CR of a few MHz to a few tens of MHz owing to the large kinetic inductance originating from the long nanowire, which is necessary for effectively coupling the photons. A feasible approach to decrease the kinetic inductance and consequently increase the detection speed is to replace a long single nanowire with multiple individual nanowires in an array. In this study, we report an SNSPD of nine interleaved nanowires with 70% system detection efficiency (SDE) and 200 Hz dark count rate at the low-photon-flux limit of 1550 nm. Owing to the small dead time (<6 ns) of each nanowire, the SNSPD achieved a maximum CR of 0.93 GHz at a photon flux of 1.26 × 1010 photons s−1 with an SDE of ∼7.4%, and a CR of 200 MHz with an SDE of over 50%. Furthermore, a photon number resolvability of up to nine photons was also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.