Abstract

The structure and microhardness of high-speed steels P6M5, P9 and P18 after electron-beam processing were investigated in the work. Electron-beam processing was carried out on the industrial accelerator ELV-4. It was established that electron-beam processing allows to obtain a modified layer on the surface of fast-cutting steels with thickness of 20 μm with high hardness, consisting of fragmented martensite with fine carbide particles. It was determined that after electron beam processing the microhardness of high-speed steels increased to 9.5 GPa. It has been experimentally established that the growth of hardness and wear resistance of high-speed steels after electron-beam processing is the result of the formation of more fragmented martensite and a decrease in the size of carbide particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.