Abstract

Solid state reactions are slow because the diffusion of atoms or ions through the reactant, intermediate and crystalline product phases is the rate-limiting step. This requires days or even weeks of high temperature treatment, and consumption of large amounts of energy. We employed spark-plasma sintering, an engineering technique that is used for high-speed consolidation of powders with a pulsed electric current passing through the sample to carry out the fluorination of niobium oxide in minute intervals. The approach saves time and large amounts of waste energy. Moreover, it allows the preparation of fluorinated niobium oxides on a gram scale using poly(tetrafluoroethylene) (®Teflon) scrap and without toxic chemicals. The synthesis can be upscaled easily to the kg range with appropriate sintering equipment. Finally, NbO2F and Nb3O7F prepared by spark plasma sintering show significant photoelectrocatalytic (PEC) oxygen evolution from water in terms of photocurrent density and incident photon-to-current efficiency (% IPCE), whereas NbO2F and Nb3O7F prepared by conventional high temperature chemistry show little to no PEC response. Our study is a proof of concept for the quick, clean and energy saving production of valuable photocatalysts from plastic waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.