Abstract

Scanning electrochemical microscopy (SECM) allows imaging and analysis of a variety of biological samples, such as living cells. Up to now, it still remains a challenge to successfully decouple signals related to topography and reactivity. Furthermore, such delicate samples require careful adjustment of experimental parameters, such as scan velocity. The present study proposes a method to extract a substrate's kinetic rate by numerical modeling and experimental high speed constant height SECM imaging. This is especially useful for the determination of substrates with unknown surface reaction kinetics and large topographical features. To make this approach applicable to soft cell samples, which cannot be imaged at high velocity, a nonlinear fit strategy is presented to obtain kinetic rate values also under slow scan velocity conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call