Abstract

As an important three-dimensional (3D) display technology, computer-generated holograms (CGHs) have been facing challenges of computational efficiency and realism. The polygon-based method, as the mainstream CGH algorithm, has been widely studied and improved over the past 20 years. However, few comprehensive and high-speed methods have been proposed. In this study, we propose an analytical spectrum method based on the principle of spectral energy concentration, which can achieve a speedup of nearly 30 times and generate high-resolution (8K) holograms with low memory requirements. Based on the Phong illumination model and the sub-triangles method, we propose a shading rendering algorithm to achieve a very smooth and realistic reconstruction with only a small increase in computational effort. Benefiting from the idea of triangular subdivision and octree structures, the proposed original occlusion culling scheme can closely crop the overlapping areas with almost no additional overhead, thus rendering a 3D parallax sense. With this, we built a comprehensive high-speed rendering pipeline of polygon-based holograms capable of computing any complex 3D object. Numerical and optical reconstructions confirmed the generalizability of the pipeline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.