Abstract

The bursts of picosecond laser pulses have nanosecond-level short interval delay. These bursts contain a variable number of sub-pulses, which are used for laser cutting of copper current collector and graphite anode material for Li-ion battery anode. The influences of 2–10 sub-pulses on kerf edges were studied and were compared with that of a single pulse. The shapes of anode edge cut under different conditions, obtained using scanning electron microscopy (SEM), revealed that using burst mode would yield a smaller heat-affected zone (HAZ) of the copper current collector and smaller delamination width of graphite anode material. The capability of laser cutting of anode was characterized with maximum single-time cutting speed. Results showed that the cutting efficiency was raised evidently with the increase in the number of pulses in a burst, and the maximum cutting speeds for the copper current collector and graphite anode material could reach 3,800 mm/s and 500 mm/s respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.