Abstract

Privacy amplification is an important step in the post-processing of quantum communication, which plays an indispensable role in the security of quantum key distribution systems. In this paper, we propose a Cellular Automata-based privacy amplification algorithm, which improves the speed of key distribution. The proposed algorithm is characterized by block iteration to generate secure key of arbitrary length. The core of the algorithm in this paper is to use the property that Cellular Automata can generate multiple new associated random sequences at the same time to carry out bit operations for multiple negotiation keys in the meantime and calculate in turn, so as to quickly realize the compression of negotiation keys. By analyzing the final key, the proposed algorithm has the advantages of fast key generation speed and high real-time performance. At the same time, the results of the NIST randomness test and avalanche test show that the algorithm has good randomness performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call