Abstract
Decades ago, glass fiber promised to be the future of communications offering large bandwidth, low attenuation, and electromagnetic compatibility. For the long haul applications, this promise has been fulfilled. Today, glass fibers have yielded simple, reliable, and economic means of communicating worldwide. However, when it comes to shorter distances and rugged environments, glass fiber optics has not been the answer. Unforeseen rapid developments in software and display technology have enabled communications in the form of multimedia, E-mail, web pages, and video conferencing. These developments are pushing data rates higher and higher in application environments that are more severe, uncontrolled and require shorter connected intensive links. To achieve desired data rates and electromagnetic compatibility (EMC) using copper systems, shielded cable and connectors or parallel links are necessary, driving up cost and complexity. Glass fiber optic systems provide more than adequate bandwidth and superior EMC but cannot offer a cost effective, robust, user-friendly system. Recent developments have poised plastic optical fiber (POF) to fill the physical layer gap. This paper will discuss the recent developments in plastic fiber including appropriate application space, types of plastic optical fiber, ARPA-funded HSPN team, and recent POF developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Aerospace and Electronic Systems Magazine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.