Abstract

In this paper we study high-speed pattern effect-free cross-gain modulation (XGM) in quantum-dot vertical-cavity semiconductor optical amplifier (QD-VCSOA) with and without considering Auger effect. XGM is examined for the different surface densities of QDs and bias currents. We show that appearance of the pattern effect strongly depends on the bias current and surface density of QDs. Pattern effect is improved at higher injection current or low dot density. However, at higher currents since Auger scattering is stronger it fills the higher state of QD and causes the drop of stimulated emission resulting in lower modulation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call