Abstract

Abstract-Modified Rayleigh-Plesset models are commonly used to characterize the acoustic response of microbubbles under ultrasound exposure. In most instances these models have been parameterized through acoustic measurements taken from bulk suspensions of microbubbles. The aim of this study was to parameterize the Hoff model for the commercial contrast agent SonoVue using optically observed oscillations from individual microbubbles recorded with a high-speed camera. The shell elasticity model term was tuned to fit simulation data to the measured oscillations while the shell viscosity parameter was held constant at 1 Pa??s. The results demonstrate a limited ability of the model to predict the microbubble behavior. The shell elasticity parameter was found to vary proportionally between 10 and 80 MPa with the initial microbubble diameter, implying the viscoelastic shell terms are not a constant property of the shell material. Further analysis using a moving window optimization to probe the microbubble responses suggests that the elasticity of the shell can increase by up to 50% over the course of insonation, particularly for microbubbles oscillating nearer to their resonant frequency. Microbubble oscillations were modeled more successfully by incorporating a varying elasticity term into the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.