Abstract

The Frascati Tokamak Upgrade (FTU) may require multiple high-speed pellet injection in order to achieve quasi-steady-state conditions. A research and development program was thus being pursued at ENEA Frascati, aimed at developing a multishot two-stage pellet injector (MPI), featuring eight “pipe gun” barrels and eight small two-stage pneumatic guns. According to FTU requirements, the final goal is to simultaneously produce up to eight D2 pellets, and then deliver them during a plasma pulse (1 s) with any time schedule, at speeds in the 1–2.5 km/s range. A prototype was constructed and tested to demonstrate the feasibility of the concept, and optimize pellet formation and firing sequences. This laboratory facility was automatically operated by means of a programmable logic controller (PLC), and had a full eight-shot capability. However, it was equipped as a first approach with only four two-stage guns. In this article we will describe in detail the guidelines of the MPI prototype design, which were strongly influenced by some external constraints. We will also report on the results of the experimental campaign, during which the feasibility of such a two-stage MPI was demonstrated. Sequences of four intact D2 pellets in the 1.2–1.6 mm size range, fired at time intervals of a few tens up to a few hundreds of ms, were routinely delivered in a laboratory experiment at injection speeds above 2.5 km/s, with good reproducibility and satisfactory aiming dispersion. Some preliminary effort to address the problem of propellant gas handling, based on an innovative approach, gave encouraging results, and work is in progress to carry out an experiment to definitely test the feasibility of this concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call