Abstract

Conventional confocal and two-photon microscopy scan the field of view sequentially with single-point laser illumination. This raster-scanning method constrains video speeds to tens of frames per second, which are too slow to capture the temporal patterns of fast electrical events initiated by neurons. Nipkow-type spinning-disk confocal microscopy resolves this problem by the use of multiple laser beams. We describe experimental procedures for functional multineuron calcium imaging (fMCI) based on Nipkow-disk confocal microscopy, which enables us to monitor the activities of hundreds of neurons en masse at a cellular resolution at up to 2000 fps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.