Abstract

A novel high speed microcompression platen tester was developed in order to measure the out-of-plane compressive modulus of thin materials. The instrument is capable of subjecting a sample of thickness 20 μm or greater to a transverse compressive pulse over a time interval ranging from approximately 2 ms to several seconds, and can therefore be used to collect data under conditions representative of those in a high speed calender nip. In this study, free layers of coating formulations normally used to coat paper were prepared and tested using the microcompression platen tester described above. Tests were conducted at high speeds, with a pulse duration of 2 ms during the compressive stroke, and at 23 °C to simulate room temperature calendering conditions. The compressive modulus of the coating did not correlate strongly with the modulus of its constituent latex. Latex content, however, strongly affected coating compressive modulus. A sharp increase in the compressive modulus was observed at the coating critical pigment volume concentration (CPVC)—essentially the latex concentration at which the coating layer porosity is reduced to zero. Pigment size distribution and pigment morphology also affected the compressive modulus of coating in a manner consistent with packing theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.