Abstract

One- and two-dimensional solid-state 1H nuclear magnetic resonance spectra of gramicidin A incorporated in a dimyristoylphosphatidylcholine membrane have been obtained with use of high-speed magic angle spinning. By rotating the sample at 13 kHz, it is possible to observe signals in the 1H spectra between 6.0 and 9.0 ppm attributable to the aromatic protons of the tryptophan residues and the formyl group proton of gramicidin A. Two-dimensional solid-state COSY spectra provided information for the peak assignments. Moreover, changes in the 1H spectra have been observed as a function of the co-solubilization solvent initially used to prepare the samples and therefore as a function of the conformation adopted by gramicidin A. Three organic solvents have been used: trifluoroethanol, a mixture of methanol/chloroform (1:1 v/v), and ethanol. The conformational interconversion of gramicidin A from the double helix conformation to the channel structure for the sample prepared from ethanol was confirmed by following the time evolution of the proton spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.