Abstract

High-speed and low-latency data transmission is a crucial requirement of in-vehicle networks (IVNs), primarily to support connected and autonomous vehicles (CAVs), which require many sensors, cameras, and critical/safety data transmissions. To improve network performance for next-generation IVNs and reduce the wire harnesses complexity, bus topology-based IVNs, e.g., 10BASE-T1S and the controller area network with extended length (CAN-XL), have been proposed. However, their performance is insufficient with respect to data rates and latency to support next-generation IVN requirements. In this article, we propose technical methods to improve the performance of bus topology-based IVNs for next-generation IVNs, providing high-speed and low-latency data transmission with wideband and high-order modulated signaling by employing equalizers and ultralow latency for critical data transmission via a preemption method within round-robin transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.