Abstract

This paper will focus on the trends for the space-based lasers, optics and terminals used in the intersatellite networks. Reviewed and evaluate the recent development in the space-based laser technologies and the critical parameters that are employed for successful high-speed intersatellite communications systems. Fiber optics and photonics technology including lasers increasingly being used in aerospace applications and many challenges are involved, since designing for aerospace is very different than for the earth environment. Satellites are much more challenging and for their intersatellite solutions have to contemplate more specific requirements such as space radiation attacks, operation in harsh environment of space and achieving weight, power requirements and reliability for space are few to consider. Therefore it is important to design a system to defend against the radiation from ionizing, gamma, and other attacks. There are numerous methods to protect them from radiation, including shielding, error correction, and using radiation resistance shielding and radiation hardening. Building laser for high speed communications network for the harsh environment of space using optical links in space has proven to be complicated task and many such schemes were tried without success in the past. Space-based optical communications using satellites in low earth orbit (LEO) and Geo-synchronous orbits (GEO) hold great promise for the proposed Internet in the Sky network of the future. However in the last few years, there has been impressive progress made to bring the concept of laser-based intersatellite systems to fruition in civilian and government-non classified projects. Laser communications offer a viable alternative to established RF communications for inter-satellite links and other applications where high performance links are a necessity. High data rate, small antenna size, narrow beam divergence, and a narrow field of view are characteristics of laser-based systems and they are just few numbers of potential advantages for system design over radio frequency communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.