Abstract

The brain is an especially active metabolic system, requiring a large supply of energy following neuronal activation. However, direct observation of cellular metabolic dynamics associated with neuronal activation is challenging with currently available imaging tools. In this study, an optical imaging approach combining imaging of calcium transients and the metabolic co-enzyme nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is utilized to track the metabolic dynamics in hippocampal neuron cultures. Results show distinct cellular components for the NAD(P)H response following neuronal activity, where notable differences in the NAD(P)H dynamics between neurons and astrocytes can be directly observed. Additionally, tracking of these responses across a large field of view is demonstrated for metabolic profiling of neuronal activation. Observation of neuronal dynamics using these methods allows for closer examination of the complex metabolic machinery of the brain, and may lead to a better understanding of the cellular metabolism of neuronal activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.