Abstract

A novel dopant segregated Schottky barrier (DSSB) FinFET SONOS device is demonstrated in terms of multi functioning in a high speed NAND-type flash memory and capacitorless 1T-DRAM. In addition, a novel program mechanism that uses energy band engineered hot electrons (EBEHE) energized by sharp energy band bending at the edge of source/drain (S/D) is proposed for a high speed flash memory programming operation. A short program time of 100 ns and a low program voltage of 12 V yield a V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> shift of 3.5 V and a retention time exceeding 10 years. For multi functioning, the operation of a capacitorless 1T-DRAM is also demonstrated with a partially silicided DSSB in the same device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call