Abstract
We report dual-view band-limited illumination profilometry (BLIP) with temporally interlaced acquisition (TIA) for high-speed, three-dimensional (3D) imaging. Band-limited illumination based on a digital micromirror device enables sinusoidal fringe projection at up to 4.8 kHz. The fringe patterns are captured alternately by two high-speed cameras. A new algorithm, which robustly matches pixels in acquired images, recovers the object’s 3D shape. The resultant TIA–BLIP system enables 3D imaging over 1000 frames per second on a field of view (FOV) of up to 180 mm × 130 mm (corresponding to 1180 × 860 pixels ) in captured images. We demonstrated TIA–BLIP’s performance by imaging various static and fast-moving 3D objects. TIA–BLIP was applied to imaging glass vibration induced by sound and glass breakage by a hammer. Compared to existing methods in multiview phase-shifting fringe projection profilometry, TIA–BLIP eliminates information redundancy in data acquisition, which improves the 3D imaging speed and the FOV. We envision TIA–BLIP to be broadly implemented in diverse scientific studies and industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.