Abstract

This paper presents a novel high-speed drive and frictionless suspension system for a rotor spinning unit which opens up the field for further textile technology development, potentially leading to higher productivity, reduced power consumption, and dust deposit. In contrast to conventional rotor spinning machines, individually driven rotors are open on both sides, which allows better arrangement of related spinning components. To achieve a very high lifetime, the rotor is suspended by means of active magnetic bearing. Outstanding energy efficiency can be achieved due to the frictionless magnetic suspension of the rotor and a slotless electronically commutated permanent-magnet motor in conjunction with an optimized frequency inverter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.