Abstract

High-speed digital imaging of the medial surface of the vocal folds was performed in excised canine larynx experiments. Building on the excised larynx investigations of Baer [Ph.D. dissertation, MIT, Boston, MA (1975)] and hemilarynx investigations of Jiang and Titze [Laryngoscope 103, 872-882 (1993)], nine vocal fold fleshpoints were tracked simultaneously along the medial surface of one coronal plane of the left vocal fold using a Kodak EktaPro 4540 high-speed digital imaging system. By imaging from two distinct views, 3D reconstructions of fleshpoint trajectories were performed with a sampling frequency of 4.5 kHz and a spatial resolution of approximately 0.08 mm. Quantitative results were derived from a typical example of periodic chestlike vibrations. Furthermore, these data were decomposed into empirical eigenfunctions, the building blocks of vocal fold vibration, illuminating basic mechanisms of self-sustained oscillation. Previously, such mechanisms have only been explored theoretically using computer models of vocal fold vibration [Berry et al., J. Acoust. Soc. Am. 95, 3595-3604 (1994)]. Similar to the theoretical studies, two eigenfunctions captured 98% of the variance of the data. Because this investigation utilized high-speed technology, the methodology may also be used to examine complex, aperiodic vibrations. Thus, this technique allows mechanisms of regular and irregular vocal fold vibration to be explored using direct observations of vibrating tissues in the laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call