Abstract

This paper is a study of high-throughput filter structures such as block structures and their behavior in finite precision environments. Block structures achieve high throughput rates by using a large number of processors working in parallel. It has been believed that block structures which are relatively robust to round-off noise must also be robust to coefficient quantization errors. However, our research has shown that block structures, in fact, have high coefficient sensitivity. A potential problem that arises as a result of coefficient quantization is a periodically time-varying behavior exhibited by the realized filter. We will demonstrate how finite wordlength errors can change a nominally time-invariant filter into a time-varying system. We will identify the block structures that have low coefficient sensitivity, and develop high-speed structures that are immune to the time-varying problems caused by coefficient quantization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.