Abstract
A high-speed corner detection algorithm based on fuzzy ID3 decision tree was proposed. In the algorithm, the Bresenham circle with 3-pixel radius was used as the test mask, overlapping the candidate corners with the nucleus. Connected pixels on the circle were applied to compare the intensity value with the nucleus, with the membership function used to give the fuzzy result. The pixel with maximum information gain was chosen as the parent node to build a binary decision tree. Thus, the corner detector was derived. The pictures taken in Fengtai Railway Station in Beijing were used to test the method. The experimental results show that when the number of pixels on the test mask is chosen to be 9, best result can be obtained. The corner detector significantly outperforms existing detector in computational efficiency without sacrificing the quality and the method also provides high performance against Poisson noise and Gaussian blur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.