Abstract

In Digital Signal Processing, the convolution and deconvolution with a very long sequence is ubiquitous in many application areas. The basic blocks in convolution and de-convolution implementation are multiplier and divider. They consume much of time. This paper presents a direct method of computing the discrete linear convolution, circular convolution and deconvolution. The approach is easy to learn because of the similarities to computing the multiplication of two numbers. The most significant aspect of the proposed method is the development of a multiplier and divider architecture based on Ancient Indian Vedic Mathematics sutras Urdhvatriyagbhyam and Nikhilam algorithm. The results show that the implementation of linear convolution and circular convolution using vedic mathematics is efficient in terms of area and speed compared to their implementation using conventional multiplier & divider architectures. The coding is done in VHDL. Simulation and Synthesis are performed using Xilinx ISE design suit 14.2. Simulated results for proposed 4×4 bit Vedic convolution circuit shows a reduction in delay of 88% than the conventional method and 41% than the OLA method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.