Abstract
Two-dimensional (2-D) ice flow thermodynamics coupled model acts as a vital role for visualizing the ice sheet behaviours of the Antarctica region and the climate system. One of the parameters used in this model is ice thickness. Explicit method of finite difference method (FDM) is used to discretize the ice thickness equation. After that, the equation will be performed on Compute Unified Device Architecture (CUDA) programming by using Graphics Processing Unit (GPU) platform. Nowadays, the demand of GPU for solving the computational problem has been increasing due to the low price and high performance computation properties. This paper investigates the performance of GPU hardware supported by the CUDA parallel programming and capable to compute a large sparse complex system of the ice thickness equation of 2D ice flow thermodynamics model using multiple cores simultaneously and efficiently. The parallel performance evaluation (PPE) is evaluated in terms of execution time, speedup, efficiency, effectiveness and temporal performance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.