Abstract

As a strong candidate for future electronics, atomically thin black phosphorus (BP) has attracted great attention in recent years because of its tunable bandgap and high carrier mobility. Here, we show that the transport properties of BP device under high electric field can be improved greatly by the interface engineering of high-quality HfLaO dielectrics and transport orientation. By designing the device channels along the lower effective mass armchair direction, a record-high drive current up to 1.2 mA/μm at 300 K and 1.6 mA/μm at 20 K can be achieved in a 100-nm back-gated BP transistor, surpassing any two-dimensional semiconductor transistors reported to date. The highest hole saturation velocity of 1.5 × 107 cm/s is also achieved at room temperature. Ballistic transport shows a record-high 36 and 79% ballistic efficiency at room temperature and 20 K, respectively, which is also further verified by theoretical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.