Abstract
Creating a high-speed elliptic curve cryptographic (ECC) processor capable of performing fast point Multiplication with low hardware utilisation is a critical requirement in cryptography and network security. This paper describes the implementation of a high-speed, field-programmable gate array (FPGA) in this paper. A high-security digital signature technique is implemented using Edwards25519, a recently approved twisted Edwards’s curve. For point addition and point doubling operations on the twisted Edwards curve, advanced hardware configurations are developed in which each task involves only 516 and 1029 clock cycles, respectively. As an observation the ECC processor presented in this paper begins with the process which takes 1.48 ms of single-point multiplication to be performed. The comparison of key size and its ratio which shows the impact on processing of each processor is shown for ECC processor and RSA processor. The delay and number of slices used for the ECC processor is shown and this is a developed solution saves time by providing rapid scalar multiplication with low hardware consumption without compromising on security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Research in Science, Communication and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.