Abstract

Pose recognition in character animations is an important avenue of research in computer graphics. However, the current use of traditional artificial intelligence algorithms to recognize animation gestures faces hurdles such as low accuracy and speed. Therefore, to overcome the above problems, this paper proposes a real-time 3D pose recognition system, which includes both facial and body poses, based on deep convolutional neural networks and further designs a single-purpose 3D pose estimation system. First, we transformed the human pose extracted from the input image to an abstract pose data structure. Subsequently, we generated the required character animation at runtime based on the transformed dataset. This challenges the conventional concept of monocular 3D pose estimation, which is extremely difficult to achieve. It can also achieve real-time running speed at a resolution of 384 fps. The proposed method was used to identify multiple-character animation using multiple datasets (Microsoft COCO 2014, CMU Panoptic, Human3.6M, and JTA). The results indicated that the improved algorithm improved the recognition accuracy and performance by approximately 3.5% and 8–10 times, respectively, which is significantly superior to other classic algorithms. Furthermore, we tested the proposed system on multiple pose-recognition datasets. The 3D attitude estimation system speed can reach 24 fps with an error of 100 mm, which is considerably less than that of the 2D attitude estimation system with a speed of 60 fps. The pose recognition based on deep learning proposed in this study yielded surprisingly superior performance, proving that the use of deep-learning technology for image recognition has great potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call