Abstract

This paper presents a method that combines a robust controller (H $_{\infty }$ ) and an iterative learning controller (ILC) to control a low mechanical bandwidth nanopositioning stage for high-speed atomic force microscopy imaging. In conventional scanning configurations, the imaging speed of a low-resonance frequency scanner is limited to a few Hz. However, the images obtained using the proposed method have no obvious anamorphosis with a scan speed of up to 80 Hz. This method uses a sinusoidal scanning mode in the fast-scan axis, which effectively reduces the mechanical vibration of the XY -scanner and improves the imaging bandwidth. In addition, a compact high-bandwidth Z -scanner configured with a symmetrical dual-actuator was developed to replace the Z -axis of the nanopositioning stage for high-speed tracking of the sample topography. To further improve the imaging performance, an ILC is designed to suppress the nonlinear behavior of piezoelectric and reduce the tracking error. In addition, a model-based H $_{\infty }$ is designed to reduce the measurement error and enhance the image quality. All algorithms and real-time control are implemented with a field-programmable gate array platform. The experimental results demonstrated that these configurations exhibit significant performance improvements by comparison with conventional scanning modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call