Abstract

This paper presents recent results on high-speed, quasi-single-mode, 850 nm vertical-cavity surface-emitting lasers (VCSELs) with a narrow spectral width for extended-reach optical interconnects. The top mirror reflectivity is adjusted for high output power, slope efficiency, and small signal modulation bandwidth. An oxide confined VCSEL with an ~3 μm aperture diameter delivers 2 mW of output power and reaches a resonance frequency as high as 25 GHz and a modulation bandwidth exceeding 20 GHz. A small K-factor of 0.17 ns and a large D-factor of 17.3 GHz/mA1/2, extracted from the VCSEL modulation response, along with the improved DC and modal properties enable energy-efficient data transmission at high bit rates over long-distance multimode fiber. Error-free transmission at bit rates exceeding 20 Gbits/s over 1.1 km of OM4 fiber is demonstrated and shown to be limited mainly by the photoreceiver bandwidth. A theoretical investigation of the dependence of link performance on photoreceiver bandwidth is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call