Abstract
The properties of multiple reflections from narrow bandwidth reflection Bragg gratings are presented. The use of multiple reflections serves to increase the suppression ratio of the out-of-band spectral content such that contributions of grating sidelobes can be mitigated. The result is a device which retains spectral and angular selectivity in a single high efficiency diffraction order but reshapes spectral/angular response to achieve higher signal to noise ratios (SNR). The material for recording these high suppression devices is photo-thermo-refractive (PTR) glass. PTR is a highly homogeneous photosensitive glass with features such as low losses and high laser damage threshold. It has recently been used with good success to record permanent volume Bragg gratings with high efficiency and narrow band selectivity for use in laser cavities. Multiple reflections from the grating surface are achieved using several different arrangements. The multiple pass grating reflections are demonstrated and compared to the performance of a single reflection from a volume Bragg grating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.