Abstract

Most accounts of single- and multi-unit responses in auditory cortex under anesthetized conditions have emphasized V-shaped frequency tuning curves and low-pass sensitivity to rates of repeated sounds. In contrast, single-unit recordings in awake marmosets also show I-shaped and O-shaped response areas having restricted tuning to frequency and (for O units) sound level. That preparation also demonstrates synchrony to moderate click rates and representation of higher click rates by spike rates of non-synchronized tonic responses, neither of which are commonly seen in anesthetized conditions. The spectral and temporal representation observed in the marmoset might reflect special adaptations of that species, might be due to single- rather than multi-unit recording, or might indicate characteristics of awake-versus-anesthetized recording conditions. We studied spectral and temporal representation in the primary auditory cortex of alert cats. We observed V-, I-, and O-shaped response areas like those demonstrated in awake marmosets. Neurons could synchronize to click trains at rates about an octave higher than is usually seen with anesthesia. Representations of click rates by rates of non-synchronized tonic responses exhibited dynamic ranges that covered the entire range of tested click rates. The observation of these spectral and temporal representations in cats demonstrates that they are not unique to primates and, indeed, might be widespread among mammalian species. Moreover, we observed no significant difference in stimulus representation between single- and multi-unit recordings. It appears that the principal factor that has hindered observations of high spectral and temporal acuity in the auditory cortex has been the use of general anesthesia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call