Abstract

The effects of insect infestation in agricultural crops are of major ecological and eco- nomic interest because of reduced yield, increased cost of pest control and increased risk of environmental contamination from insecticide application. The Russian wheat aphid (RWA, Diuraphis noxia) is an insect pest that causes damage to wheat (Triticum aestivum L.). We pro- posed that concentrated RWA feeding areas, referred to as hot spots, could be identified and isolated from uninfested areas within a field for site specific aphid management using remotely sensed data. Our objectives were to (1) investigate the reflectance characteristics of infested and uninfested wheat by RWA and (2) evaluate utility of airborne hyperspectral imagery with 1-m spatial resolution for detecting, quantifying, and mapping RWA infested areas in commercial winter wheat fields using the constrained energy minimization classifier. Percent surface reflec- tance from uninfested wheat was lower in the visible and higher in the near infrared portions of the spectrum when compared with RWA-infested wheat. The overall classification accuracies of >89% for damage detection were achieved. These results indicate that hyperspectral imagery can be effectively used for accurate detection and quantification of RWA infestation in wheat for site-specific aphid management. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. (DOI: 10.1117/1.JRS.8.083661)

Highlights

  • The Russian wheat aphid (RWA: Diuraphis noxia) is one of the economically important insect pests of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) around the world.[1,2] While feeding, the RWA injects toxin into plants manifesting into a variety of stress symptoms

  • The spectral characteristics of the wheat canopies were markedly affected by RWA feeding in fields 1 to 3

  • Beyond 730 nm, near infrared (NIR) reflectance from control wheat was significantly higher when compared with RWA hot spots

Read more

Summary

Introduction

The Russian wheat aphid (RWA: Diuraphis noxia) is one of the economically important insect pests of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) around the world.[1,2] While feeding, the RWA injects toxin into plants manifesting into a variety of stress symptoms. These symptoms are expressed as white, reddish-purple, or yellow longitudinal streaks on leaves and stems and rolling and stunting of either stems or leaves.[1] Stunting in heavily infested plants leads to reductions in plant and stem height, leaf area, root development, chlorophyll concentration, grain mass, and vegetative biomass.[1,3,4] Plant stress due to the RWA is a combination of developmental, biochemical, physiological, and morphological responses.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call