Abstract

Porous C3N4 (PCN) is favored by researchers because it has more surface active sites, higher specific surface area and stronger light absorption ability than traditional g–C3N4. In this study, cerium dioxide nanoparticles (CeO2–NPs) with mixed valence state of Ce3+ and Ce4+ were doped into the PCN framework by a two-step method. The results indicate that CeO2–NPs are highly dispersed in the PCN framework, which leads to a narrower band gap, a wider range of the light response and an improved the separation efficiency of photogenerated charge in PCN. Moreover, the specific surface area (145.69 m2 g−1) of CeO2–NPs doped PCN is a 25.5% enhancement than that of PCN (116.13 m2 g−1). In the experiment of photocatalytic selective oxidation of benzyl alcohol, CeO2–NPs doped porous C3N4 exhibits excellent photocatalytic activity, especially Ce–PCN–30. The conversion rate of benzyl alcohol reaches 74.9% using Ce–PCN−30 as photocatalyst by 8 h of illumination, which is 25.7% higher than that of pure porous C3N4. Additionally, CeO2–NPs doped porous C3N4 also exhibits better photocatalytic efficiency for other aromatic alcohols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.